4.7 Article

Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum

Journal

PHYSIOLOGIA PLANTARUM
Volume 138, Issue 2, Pages 226-237

Publisher

WILEY
DOI: 10.1111/j.1399-3054.2009.01320.x

Keywords

-

Categories

Funding

  1. 863 project [2006AA10Z134]
  2. 973 project [2005CB120903]
  3. National Natural Science Foundation of China [30571108, 30971855]

Ask authors/readers for more resources

MicroRNAs (miRNAs) have emerged as a class of gene expression regulators that play crucial roles in many biological processes. Recently, several reports have revealed that micoRNAs participate in regulation of symbiotic interaction between plants and nitrogen-fixing rhizobia bacteria. However, the role of miRNAs in another type of plant-microbe interaction, arbuscular mycorrhizal (AM) symbiosis, has not been documented. We carried out a microarray screen and poly(A)-tailed reverse transcriptase-polymerase chain reaction (RT-PCR) validation for miRNA expression in tomato (Solanum lycopersicum) under varying phosphate (Pi) availability and AM symbiosis conditions. In roots, miRNA158, miRNA862-3p, miRNA319, miRNA394 and miR399 were differentially regulated under three different treatments, Pi sufficient (+P ), Pi deficient (-P) and AM symbiosis (+M ). In leaves, up to 14 miRNAs were up- or down-regulated under either or both of the Pi treatments and AM symbiosis, of which miR158, miR319 and miR399 were responsive to the treatments in both roots and leaves. We detected that miR395, miR779.1, miR840 and miR867 in leaves were specifically responsive to AM symbiosis, which is independent of Pi availability, whereas miR398 in leaves and miR399 in both roots and leaves were Pi starvation induced. Furthermore, miR158 in roots as well as miR837-3p in leaves were responsive to both Pi deprivation and AM colonization. In contrast, miR862-3p in roots was responsive to Pi nutrition, but not to AM symbiosis. Moreover, the group of miRNA consisting miR319 and miR394 in roots and miR158, miR169g*, miR172, miR172b*, miR319, miR771 and miR775 in leaves were up- and down-regulated by Pi starvation, respectively. The data suggest that altered expression of distinct groups of miRNA is an essential component of Pi starvation-induced responses and AM symbiosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available