4.7 Article

Protective effect of supplemental anthocyanins on Arabidopsis leaves under high light

Journal

PHYSIOLOGIA PLANTARUM
Volume 138, Issue 2, Pages 215-225

Publisher

WILEY
DOI: 10.1111/j.1399-3054.2009.01316.x

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [30770173, 30870385]
  2. National Basic Research Program of China (973 Program) [2009CB118504]

Ask authors/readers for more resources

Ten anthocyanin components have been detected in roots of purple sweet potato (Ipomoea batatas Lam.) by high-performance liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry. All the anthocyanins were exclusively cyanidins or peonidin 3-sophoroside-5-glucosides and their acylated derivatives. The total anthocyanin content in purple sweet potato powder obtained by solid-phase extraction was 66 mg g-1. A strong capacity of purple sweet potato anthocyanins (PSPA) to scavenge reactive oxygen species (superoxide, hydroxyl radical) and the stable 1,1-diphenyl-2-picrylhydrazyl organic free radical was found in vitro using the electron spin resonance technique. To determine the functional roles of anthocyanins in leaves in vivo, for the first time, supplemental anthocyanins were infiltrated into leaves of Arabidopsis thaliana double mutant of the ecotype Landsberg erecta (tt3tt4) deficient in anthocyanin biosynthesis. Chlorophyll fluorescence imaging showed that anthocyanins significantly ameliorated the inactivation of photosystems II during prolonged high-light (1300 mu mol m-2 s-1) exposure. Comet assay of DNA revealed an obvious role of supplemental PSPA in alleviating DNA damage by high light in leaves. Our results suggest that anthocyanins could function in vitro and in vivo to alleviate the direct or indirect oxidative damage of the photosynthetic apparatus and DNA in plants caused by high-light stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available