4.7 Article

Isolation and functional characterization of the Arabidopsis salt-tolerance 32 (AtSAT32) gene associated with salt tolerance and ABA signaling

Journal

PHYSIOLOGIA PLANTARUM
Volume 135, Issue 4, Pages 426-435

Publisher

WILEY
DOI: 10.1111/j.1399-3054.2008.01202.x

Keywords

-

Categories

Funding

  1. Agricultural Plant Stress Research Center (KOSEF program, SRC, funded by the Korea government, MOST)
  2. Korean Government [KRF-2007-331-F00020]

Ask authors/readers for more resources

Recently, we have isolated salt-tolerance genes (SATs) on the basis of the overexpression screening of yeast with a maize cDNA library from kernels. One of the selected genes [salt-tolerance 32 (SAT32)] appears to be a key determinant for salt stress tolerance in yeast cells. Maize SAT32 cDNA encodes for a 49-kDa protein, which is 41% identity with the Arabidopsis salt-tolerance 32 (AtSAT32) unknown gene. Arabidopsis Transfer-DNA (T-DNA) knockout AtSAT32 (atsat32) altered root elongation, including reduced silique length and reduced seed number. In an effort to further assess salinity tolerance in Arabidopsis, we have functionally characterized the AtSAT32 gene and determined that salinity and the plant hormone ABA induced the expression of AtSAT32. The atsat32 mutant was more sensitive to salinity than the wild-type plant. On the contrary, Arabidopsis overexpressing AtSAT32 (35S::AtSAT32) showed enhanced salt tolerance and increased activity of vacuolar H+-pyrophosphatase (V-PPase, EC 3.6.1.1) under high-salt conditions. Consistent with these observations, 35S::AtSAT32 plants exhibited increased expression of salt-responsive and ABA-responsive genes, including the Rd29A, Erd15, Rd29B, Rd22 and RAB18 genes. Therefore, our results indicate that AtSAT32 is involved in both salinity tolerance and ABA signaling as a positive regulator in Arabidopsis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available