4.7 Article

Hydraulic fracturing water use variability in the United States and potential environmental implications

Journal

WATER RESOURCES RESEARCH
Volume 51, Issue 7, Pages 5839-5845

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015WR017278

Keywords

hydraulic fracturing; water use; shale gas; well stimulation; unconventional oil and gas

Funding

  1. U.S. Geological Survey

Ask authors/readers for more resources

Until now, up-to-date, comprehensive, spatial, national-scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m(3) and 19,425 m(3) of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m(3) water per well. The highest average hydraulic fracturing water usage (10,000-36,620 m(3) per well) in watersheds across the United States generally correlated with shale-gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection-induced earthquakes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available