4.4 Article

The stability of bcc-Fe at high pressures and temperatures with respect to tetragonal strain

Journal

PHYSICS OF THE EARTH AND PLANETARY INTERIORS
Volume 170, Issue 1-2, Pages 52-59

Publisher

ELSEVIER
DOI: 10.1016/j.pepi.2008.07.032

Keywords

Bcc iron; Earth's core; Phase stability; Ab initio calculations; Tetragonal strain

Funding

  1. Royal Society
  2. EPSRC through the EURYI
  3. Engineering and Physical Sciences Research Council [EP/C546385/1] Funding Source: researchfish
  4. Natural Environment Research Council [NE/C51889X/1, hpc010001, NE/C519662/1] Funding Source: researchfish
  5. EPSRC [EP/C546385/1] Funding Source: UKRI
  6. NERC [hpc010001] Funding Source: UKRI

Ask authors/readers for more resources

The phase that iron adopts at the conditions of the Earth's inner core is still unknown. The two primary candidates are the hexagonal close packed (hcp) structure and the body centred cubic (bcc) structure polymorphs. Until recently, the former was favoured, but it now seems possible that bcc iron could be present. A remaining uncertainty regarding the latter phase is whether or not bcc iron is stable with respect to tetragonal strain under core conditions. In this paper, therefore, we present the results of high precision ab initio free energy calculations at core pressures and temperatures performed on bcc iron as a function of tetragonal strain. Within the uncertainties of the calculations, direct comparison of free energy values suggests that bcc may be unstable with respect to tetragonal strain at 5500 K; this is confirmed when the associated stresses are taken into account. However, at 6000 K, the results indicate that the bcc phase becomes more stable, although it is unclear as to whether complete stability has been achieved. Nevertheless, it remains distinctly possible that the addition of light elements could stabilise this structure convincingly. Therefore, bcc-Fe cannot be ruled out as a candidate inner core phase. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available