4.4 Article

Two-dimensional model of orificed micro-hollow cathode discharge for space application

Journal

PHYSICS OF PLASMAS
Volume 20, Issue 8, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.4818969

Keywords

-

Funding

  1. Lady Davis Foundation

Ask authors/readers for more resources

In this paper, we describe results of self-consistent two-dimensional (x-z) particle-in-cell simulations, with a Monte Carlo collision model, of an orificed micro-hollow cathode operating in a planar diode geometry. The model includes thermionic electron emission with Schottky effect, secondary electron emission due to cathode bombardment by the plasma ions, several different collision processes, and a non-uniform xenon background gas density in the cathode-anode gap. Simulated results showing behavior of the plasma density, potential distribution, and energy flux towards the hollow cathode and orifice walls, are discussed. In addition, results of simulations showing the effect of different Xe gas pressures, orifice size, and cathode voltage, on operation of the micro-hollow cathode are presented. (C) 2013 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available