4.8 Article

Removal of Hg(II) by poly(1-vinylimidazole)-grafted Fe3O4@SiO2 magnetic nanoparticles

Journal

WATER RESEARCH
Volume 69, Issue -, Pages 252-260

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2014.11.030

Keywords

Mercury; Adsorption; Magnetite; Imidazole; Silica; Magnetic nanoparticle

Funding

  1. National Natural Science Foundation of China [21377006]
  2. program for New Century Excellent Talents in University [NCET-13-0010]

Ask authors/readers for more resources

Fe3O4@SiO2 magnetic nanoparticles modified by grafting poly(1-vinylimidazole) oligomer (FSPV) was fabricated as a novel adsorbent to remove Hg(II) from water. Fourier transform infra-red spectroscopy confirmed the successful grafting of oligomer, and thermogravimetric analysis showed FSPV had a high grafting yield with organic content of 22.8%. Transmission electron microscopy image displayed that FSPV particles were polymercoated spheres with size of 10-20 nm. With saturation magnetization of 44.7 emu/g, FSPV particles could be easily separated from water with a simple magnetic process in 5 min. The Hg(II) adsorption capacity of FSPV was found to be 346 mg/g at pH 7 and 25 degrees C in 10 mM NaCl. Moreover, the removal of Hg(II) by FSPV was not obviously affected by solution pH (from 4 to 10) or humic acid (up to 8 mg/L as TOC). The presence of seven common ions including Na+, K+, Ca2+, mg(2+), Cl-, NO3-, and SO42- (up to 100 mM ionic strength) slightly increased the adsorption of Hg(II) by FSPV. X-ray photoelectron spectroscopy analysis revealed that the N atom of the imidazole ring was responsible for the bonding with Hg(II), whereas the bonding of Hg with N did not result in cleavage of Hg-Cl bond in HgCl2 and HgClOH. The regeneration of Hg(II)-loaded FSPV could be achieved with 0.5 M HCl rapidly in 10 min, and the removal of Hg(II) maintained above 94% in five consecutive adsorption-desorption cycles. Therefore, FSPV could serve as a promising adsorbent for Hg(II) removal from water. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available