4.4 Article

One-dimensional radiation-hydrodynamic simulations of imploding spherical plasma liners with detailed equation-of-state modeling

Journal

PHYSICS OF PLASMAS
Volume 19, Issue 10, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.4757980

Keywords

-

Funding

  1. Office of Fusion Energy Sciences of the U.S. Department of Energy

Ask authors/readers for more resources

This work extends the one-dimensional radiation-hydrodynamic imploding spherical argon plasma liner simulations of Awe et al. [Phys. Plasmas 18, 072705 (2011)] by using a detailed tabular equation-of-state (EOS) model, whereas Awe et al. used a polytropic EOS model. Results using the tabular EOS model give lower stagnation pressures by a factor of 3.9-8.6 and lower peak ion temperatures compared to the polytropic EOS results. Both local thermodynamic equilibrium (LTE) and non-LTE EOS models were used in this work, giving similar results on stagnation pressure. The lower stagnation pressures using a tabular EOS model are attributed to a reduction in the liner's ability to compress arising from the energy sink introduced by ionization and electron excitation, which are not accounted for in a polytropic EOS model. Variation of the plasma liner species for the same initial liner geometry, mass density, and velocity was also explored using the LTE tabular EOS model, showing that the highest stagnation pressure is achieved with the highest atomic mass species for the constraints imposed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757980]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available