4.8 Article

Dewatering in biological wastewater treatment: A review

Journal

WATER RESEARCH
Volume 82, Issue -, Pages 14-24

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2015.04.019

Keywords

Consolidation; Filtration; Resistance; Activated sludge; Pumping

Ask authors/readers for more resources

Biological wastewater treatment removes organic materials, nitrogen, and phosphorus from wastewater using microbial biomass (activated sludge, biofilm, granules) which is separated from the liquid in a clarifier or by a membrane. Part of this biomass (excess sludge) is transported to digesters for bioenergy production and then dewatered, it is dewatered directly, often by using belt filters or decanter centrifuges before further handling, or it is dewatered by sludge mineralization beds. Sludge is generally difficult to dewater, but great variations in dewaterability are observed for sludges from different wastewater treatment plants as a consequence of differences in plant design and physical-chemical factors. This review gives an overview of key parameters affecting sludge dewatering, i.e. filtration and consolidation. The best dewaterability is observed for activated sludge that contains strong, compact flocs without single cells and dissolved extracellular polymeric substances. Polyvalent ions such as calcium ions improve floc strength and dewaterability, whereas sodium ions (e.g. from road salt, sea water intrusion, and industry) reduce dewaterability because flocs disintegrate at high conductivity. Dewaterability dramatically decreases at high pH due to floc disintegration. Storage under anaerobic conditions lowers dewaterability. High shear levels destroy the flocs and reduce dewaterability. Thus, pumping and mixing should be gentle and in pipes without sharp bends. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available