4.4 Article

Hot-electron generation by cavitating Langmuir turbulence in the nonlinear stage of the two-plasmon-decay instability

Journal

PHYSICS OF PLASMAS
Volume 19, Issue 10, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.4764075

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Inertial Confinement Fusion [DE-FC52-08NA28302]
  2. University of Rochester
  3. New York State Energy Research and Development Authority
  4. National Nuclear Security Agency through its High-Energy-Density Laboratory Plasmas Grant [DE-FG52-09NA29545]
  5. DOE

Ask authors/readers for more resources

The kinetic reduced-description particle-in-cell simulation technique has been applied to study the nonlinear stage of two-plasmon-decay (TPD) instability in an inhomogeneous plasma driven by crossed laser beams. The TPD instability is found to be a prolific generator of cavitating Langmuir turbulence. Langmuir cavitons-localized longitudinal electric fields, oscillating near the local electron plasma frequency, trapped in ponderomotive density depressions-collapse to dimensions of a few electron Debye lengths, where the electric field energy is collisionlessly transferred to electron kinetic energy. The resulting hot electrons can attain instantaneous temperatures up to 100 keV with net suprathermal heat flux out of the system of up to a few percent of the input laser energy. Scaling laws for this hot-electron generation by TPD, in regimes motivated by recent experiments on the Omega laser, were presented recently by Vu et al. (H. X. Vu, D. F. DuBois, D. A. Russell, and J. F. Myatt, Phys. Plasmas 19, 102703 (2012)). This paper concentrates on the microscopic mechanisms for hot-electron generation. The spatial distribution of the maxima of the electric field envelope modulus is found to be very spiky, with the distribution of electric field envelope maxima obeying Gaussian statistics. The cavitons are produced in density-depletion trenches produced by the combined ponderomotive interference of the crossed laser beams and the ponderomotive beats of the primary backward-going TPD Langmuir waves (LWs) resulting from the crossed beams. The Langmuir turbulence is strongest in the electron-density region near 0.241x the laser's critical density, where the forward LWs from the crossed-beam TPD are degenerate. Nucleation of cavitons is assisted by the modulation of the electron density in the trenches, which in turn is caused by the beating of the common forward-going LW and the pair of backward-going LWs. The autocorrelation function of the LW envelope field provides a near-universal shape for intense cavitons-in the neighborhood of the local field maxima. The hot-electron temperature is found to be approximately a linear function of the caviton temperature determined from the Gaussian distribution of caviton maxima. These diagnostics provide strong evidence for the importance of Langmuir caviton collapse in the generation of hot electrons by TPD. Extended Zakharov model predictions for TPD exhibit the same qualitative phenomena. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4764075]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available