4.4 Article

Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas

Journal

PHYSICS OF PLASMAS
Volume 18, Issue 11, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.3647505

Keywords

astrophysical plasma; magnetic reconnection; plasma collision processes; plasma instability; plasma magnetohydrodynamics

Funding

  1. U.S. Department of Energy's Office of Science-Fusion Energy Sciences
  2. Princeton Plasma Physics Laboratory
  3. U.S. Department of Energy through the Los Alamos National Laboratory

Ask authors/readers for more resources

Recent progress in understanding the physics of magnetic reconnection is conveniently summarized in terms of a phase diagram which organizes the essential dynamics for a wide variety of applications in heliophysics, laboratory, and astrophysics. The two key dimensionless parameters are the Lundquist number and the macrosopic system size in units of the ion sound gyroradius. In addition to the conventional single X-line collisional and collisionless phases, multiple X-line reconnection phases arise due to the presence of the plasmoid instability either in collisional and collisionless current sheets. In particular, there exists a unique phase termed multiple X-line hybrid phase where a hierarchy of collisional islands or plasmoids is terminated by a collisionless current sheet, resulting in a rapid coupling between the macroscopic and kinetic scales and a mixture of collisional and collisionless dynamics. The new phases involving multiple X-lines and collisionless physics may be important for the emerging applications of magnetic reconnection to accelerate charged particles beyond their thermal speeds. A large number of heliophysical and astrophysical plasmas are surveyed and grouped in the phase diagram: Earth's magnetosphere, solar plasmas (chromosphere, corona, wind, and tachocline), galactic plasmas (molecular clouds, interstellar media, accretion disks and their coronae, Crab nebula, Sgr A*, gamma ray bursts, and magnetars), and extragalactic plasmas (active galactic nuclei disks and their coronae, galaxy clusters, radio lobes, and extragalactic jets). Significance of laboratory experiments, including a next generation reconnection experiment, is also discussed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3647505]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available