4.4 Article

Wave kinetics of relativistic quantum plasmas

Journal

PHYSICS OF PLASMAS
Volume 18, Issue 6, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.3590865

Keywords

-

Ask authors/readers for more resources

A quantum kinetic equation, valid for relativistic unmagnetized plasmas, is derived here. This equation describes the evolution of a quantum quasi-distribution, which is the Wigner function for relativistic spinless charged particles in a plasma, and it is exactly equivalent to a Klein-Gordon equation. Our quantum kinetic equation reduces to the Vlasov equation in the classical limit, where the Wigner function is replaced by a classical distribution function. An approximate form of the quantum kinetic equation is also derived, which includes first order quantum corrections. This is applied to electron plasma waves, for which a new dispersion relation is obtained. It is shown that quantum recoil effects contribute to the electron Landau damping with a third order derivative term. The case of high frequency electromagnetic waves is also considered. Its dispersion relation is shown to be insensitive to quantum recoil effects for equilibrium plasma distributions. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3590865]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available