4.4 Article

Proton deflectometry of a magnetic reconnection geometry

Journal

PHYSICS OF PLASMAS
Volume 17, Issue 4, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.3377787

Keywords

magnetic reconnection; plasma boundary layers; plasma diagnostics; plasma instability; plasma light propagation; plasma magnetohydrodynamics

Funding

  1. UK Engineering and Physical Sciences Research Council (EPSRC)
  2. European Union [MTKD-CT-2004-014423]
  3. Engineering and Physical Sciences Research Council [EP/E035728/1] Funding Source: researchfish
  4. EPSRC [EP/E035728/1] Funding Source: UKRI

Ask authors/readers for more resources

Laser-driven magnetic reconnection is investigated using proton deflectometry. Two laser beams of nanosecond duration were focused in close proximity on a solid target to intensities of I similar to 1x10(15) W cm(-2). Through the well known del n(e)x del T-e mechanism, azimuthal magnetic fields are generated around each focal spot. During the expansion of the two plasmas, oppositely oriented field lines are brought together resulting in magnetic reconnection in the region between the two focal spots. The spatial scales and plasma parameters are consistent with the reconnection proceeding due to a Hall mechanism. An optimum focal spot separation for magnetic reconnection to occur is found to be approximate to 400 +/- 100 mu m. Proton probing of the temporal evolution of the interaction shows the formation of the boundary layer between the two expanding plasma plumes and associated magnetic fields, as well as an instability later in the interaction. Such laboratory experiments provide an opportunity to investigate magnetic reconnection under unique conditions and have possible implications for multiple beam applications such as inertial confinement fusion experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available