4.4 Article

Topological complexity and tangential discontinuity in magnetic fields

Journal

PHYSICS OF PLASMAS
Volume 17, Issue 9, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.3474943

Keywords

partial differential equations; plasma magnetohydrodynamics

Funding

  1. NCAR
  2. National Science Foundation

Ask authors/readers for more resources

This is a study of the topological magnetostatic problem. A magnetic field embedded in a perfectly conducting fluid and rigidly anchored at its boundary has a specific topology invariant for all time. Subject to that topology, the force-free state of such a field generally requires the presence of tangential discontinuities (TDs). This property proposed and demonstrated by Parker [Spontaneous Current Sheets in Magnetic Fields (Oxford University Press, New York, 1994)] is explained in terms of (i) the overdetermined nature of the magnetostatic partial differential equations nonlinearly coupled to the integral equations imposing the field topology and (ii) the hyperbolic nature of the partial differential equation for the twist function alpha of the force-free field. The mathematical analysis elucidates a basic incompatibility between preserving a complex field topology and attaining equilibrium, if analyticity is assumed. Physics avoids this incompatibility via TD formation as a natural consequence of perfect conductivity. The study relates TD formation to topological complexity in two-dimensional and three-dimensional fields, as well as the topological connectivity and geometric shape of the field domain. Mathematical points made are given physical interpretations, but important topological concepts for understanding spontaneous TDs have remained incomplete. As an application, examples are presented to define twisted and untwisted potential fields found in simply and multiply connected domains, clarifying a confusion in several recent publications. Appendix A treats the expression of the frozen-in condition by a continuum of conserved, total generalized helicities. Appendix B reports briefly on concurrent developments showing that a published objection to the theory of spontaneous TDs is based upon a misunderstanding of the theory. (C) 2010 American Institute of Physics. [doi:10.1063/1.3474943]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available