4.4 Article Proceedings Paper

Nonlinear laser energy depletion in laser-plasma accelerators

Journal

PHYSICS OF PLASMAS
Volume 16, Issue 5, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.3124185

Keywords

plasma accelerators; plasma light propagation; plasma waves; red shift

Ask authors/readers for more resources

Energy depletion of intense, short-pulse lasers via excitation of plasma waves is investigated numerically and analytically. The evolution of a resonant laser pulse proceeds in two phases. In the first phase, the pulse steepens, compresses, and frequency redshifts as energy is deposited in the plasma. The second phase of evolution occurs after the pulse reaches a minimum length at which point the pulse rapidly lengthens, losing resonance with the plasma. Expressions for the rate of laser energy loss and rate of laser redshifting are derived and are found to be in excellent agreement with the direct numerical solution of the laser field evolution coupled to the plasma response. Both processes are shown to have the same characteristic length scale. In the high intensity limit, for nearly resonant Gaussian laser pulses, this scale length is shown to be independent of laser intensity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available