4.7 Article

Fluid breakup during simultaneous two-phase flow through a three-dimensional porous medium

Journal

PHYSICS OF FLUIDS
Volume 26, Issue 6, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4884955

Keywords

-

Funding

  1. National Science Foundation (NSF) [DMR-1006546]
  2. Harvard MRSEC [DMR-0820484]
  3. Advanced Energy Consortium
  4. ConocoPhillips

Ask authors/readers for more resources

We use confocal microscopy to directly visualize the simultaneous flow of both a wetting and a non-wetting fluid through a model three-dimensional (3D) porous medium. We find that, for small flow rates, both fluids flow through unchanging, distinct, connected 3D pathways; in stark contrast, at sufficiently large flow rates, the non-wetting fluid is broken up into discrete ganglia. By performing experiments over a range of flow rates, using fluids of different viscosities, and with porous media having different geometries, we show that this transition can be characterized by a state diagram that depends on the capillary numbers of both fluids, suggesting that it is controlled by the competition between the viscous forces exerted on the flowing oil and the capillary forces at the pore scale. Our results thus help elucidate the diverse range of behaviors that arise in two-phase flow through a 3D porous medium. (C) 2014 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available