4.7 Article

Electric-field-induced response of a droplet embedded in a polyelectrolyte gel

Journal

PHYSICS OF FLUIDS
Volume 25, Issue 8, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4818430

Keywords

-

Ask authors/readers for more resources

The electric-field induced response of a droplet embedded in a quenched polyelectrolyte gel is calculated theoretically. The response comprises the droplet translation and the electric-field induced flow fields within the droplet. The gel is modeled as a soft, and electrically charged porous solid saturated with a salted Newtonian fluid. The droplet is considered an incompressible Newtonian fluid with no free charge. An analytical solution, using the perturbation methodology and linear superposition, is obtained for the leading-order steady response to a DC electric-field. The fluid within the droplet is driven due to hydrodynamic coupling with the electroosmotic flow. The fluid velocity within the droplet is linearly proportional to the electroosmotic flow. Moreover, the microrheological response function of a droplet within a polyelectrolyte gel is also provided, highlighting the importance of boundary conditions at the droplet-gel interface on microrheological measurements. (C) 2013 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available