4.7 Article

Recirculation zone dynamics of a transversely excited swirl flow and flame

Journal

PHYSICS OF FLUIDS
Volume 24, Issue 7, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4731300

Keywords

-

Funding

  1. U.S. Department of Energy (DOE) [DEFG26-07NT43069, DE-NT0005054]

Ask authors/readers for more resources

This work investigates the response of the vortex breakdown region of a swirling, annular jet to transverse acoustic excitation for both non-reacting and reacting flows. This swirling flow field consists of a central vortex breakdown region, two shear layers, and an annular fluid jet. The vortex breakdown bubble, a region of highly turbulent recirculating flow in the center of the flowfield, is the result of a global instability of the swirling jet. Additionally, the two shear layers originating from the inner and outer edge of the annular nozzle are convectively unstable and rollup due to the Kelvin-Helmholtz instability. Unlike the convectively unstable shear layers that respond in a monotonic manner to acoustic forcing, the recirculation zone exhibits a range of response characteristics, ranging from minimal response to exhibiting abrupt bifurcations at large forcing amplitudes. In this study, the response of the time-average and fluctuating recirculation zone is measured as a function of forcing frequency, amplitude, and symmetry. The time-average flow field is shown to exhibit both monotonically varying and abrupt bifurcation features as acoustic forcing amplitude is increased. The unsteady motion in the recirculation zone is dominated by the low frequency precession of the vortex breakdown bubble. In the unforced flow, the azimuthal m = -2 and m = -1 modes (i.e., disturbances rotating in the same direction as the swirl flow) dominate the velocity disturbance field. These modes correspond to large scale deformation of the jet column and two small-scale precessing vortical structures in the recirculation zone, respectively. The presence of high amplitude acoustic forcing changes the relative amplitude of these two modes, as well as the character of the self-excited motion. For the reacting flow problem, we argue that the direct effect of these recirculation zone fluctuations on the flame response to flow forcing is not significant. Rather, flame wrinkling in response to flow forcing is dominated by shear layer disturbances. Recirculation zone dynamics primarily influence the time-average flame features (such as spreading angle). These influences on the flame response are indirect, as they control the transfer function relating shear layer fluctuations and the resulting flame response. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731300]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available