4.7 Article

Resistance coefficients for Stokes flow around a disk with a Navier slip condition

Journal

PHYSICS OF FLUIDS
Volume 24, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4754869

Keywords

-

Ask authors/readers for more resources

The Stokes drag and couple acting on a disk of zero thickness as it moves through Newtonian fluid are investigated for the case when slip can occur at the surface of the disk. It is shown that when the disk translates parallel to its axis, the well-known velocity field for a no-slip boundary condition exerts zero shear stress on the surface of the disk. The flow is therefore unchanged if the boundary condition on the disk is modified to a stress-free or to a Navier slip boundary condition. This invariance also holds for a disk that rotates about a diameter. However, flow around a disk that rotates about its axis, or that translates in its own plane (edgewise), is modified when the no-slip boundary condition is changed to a Navier slip condition. The fluid velocity can be expressed in terms of Hankel transforms, and the resulting dual integral equations are solved numerically. Results for the torque and drag on the disk are presented as functions of the slip length in the Navier boundary condition. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754869]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available