4.6 Article

Ectomycorrhizal Community Structure of Salix and Betula spp. at a Saline Site in Central Poland in Relation to the Seasons and Soil Parameters

Journal

WATER AIR AND SOIL POLLUTION
Volume 226, Issue 4, Pages -

Publisher

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/s11270-015-2308-7

Keywords

Salinity; Diversity; Ectomycorrhizal fungi; Willow; Birch

Funding

  1. National Science Centre (Poland) [DEC-2012/07/B/NZ9/01801]

Ask authors/readers for more resources

Saline stress is one of the most important abiotic factors limiting the growth and development of plants and associated microorganisms. While the impact of salinity on associations of arbuscular fungi is relatively well understood, knowledge of the ectomycorrhizal (EM) fungi of trees growing on saline land is limited. The main objective of this study was to determine the density and diversity of EM fungi associated with three tree species, Salix alba, Salix caprea and Betula pendula, growing in saline soil during two seasons, autumn and spring. The site was located in central Poland, and the increased salinity of the soil was of anthropogenic origin from soda production. The degree of EM colonisation of fine root tips varied between 9 and 34 % and depended on the tree species of interest (S. caprea < S. alba < B. pendula) and season (spring < autumn). Moreover, the ectomycorrhizal colonisation of B. pendula was positively correlated with pH and CaCO3, while for S. caprea and S. alba, colonisation was associated with most of the other soil parameters investigated; e.g. salinity, C-org and N. Analysis of EM fungi revealed four to five different morphotypes per each season: Tomentella sp. Sa-A, Hebeloma collariatum Sc-A, Geopora sp. Sc-A, Helotiales sp. Bp-A in the autumn and Tomentella sp. Sa-S, Tomentella sp. Sc-S and three morphotypes from the families Thelephoraceae and Pyronemataceae in the spring. In conclusion, the density of EM is related to the level of salinity (ECe), season and tree species. Tomentella spp., Hebeloma sp., Geopora sp. and Helotiales sp. are groups of species highly adapted to saline conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available