4.7 Article

Gravity-driven flow over heated, porous, wavy surfaces

Journal

PHYSICS OF FLUIDS
Volume 23, Issue 12, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3667267

Keywords

-

Ask authors/readers for more resources

The method of weighted residuals for thin film flow down an inclined plane is extended to include the effects of bottom waviness, heating, and permeability in this study. A bottom slip condition is used to account for permeability and a constant temperature bottom boundary condition is applied. A weighted residual model (WRM) is derived and used to predict the combined effects of bottom waviness, heating, and permeability on the stability of the flow. In the absence of bottom topography, the results are compared to theoretical predictions from the corresponding Benney equation and also to existing Orr-Sommerfeld predictions. The excellent agreement found indicates that the model does faithfully predict the theoretical critical Reynolds number, which accounts for heating and permeability, and these effects are found to destabilize the flow. Floquet theory is used to investigate how bottom waviness influences the stability of the flow. Finally, numerical simulations of the model equations are also conducted and compared with numerical solutions of the full Navier-Stokes equations for the case with bottom permeability. These results are also found to agree well, which suggests that the WRM remains valid even when permeability is included. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3667267]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available