4.6 Article

Chelate-Assisted Phytoremediation of Cu-Pyrene-Contaminated Soil Using Z. mays

Journal

WATER AIR AND SOIL POLLUTION
Volume 226, Issue 3, Pages -

Publisher

SPRINGER
DOI: 10.1007/s11270-014-2277-2

Keywords

EDTA; Citric acid; Z. mays; Phytoremediation

Ask authors/readers for more resources

This study compares the efficiency of a synthetic chelate (ethylenediaminetetraacetic acid-EDTA), a natural low-molecular-weight organic acid (citric acid), and their combination for phytoremediation of Cupyrene co-contaminated soils. Zea mays was grown in each soil and amended with citric acid and/or EDTA to understand the effect of chelates during phytoremediation of contaminated soils. In Cu or pyrene-contaminated soil, plant growth was negatively affected by EDTA (43 %) and citric acid (44 %), respectively, while EDTA + citric acid promoted (41 %) plant growth in co-contaminated soil. EDTA and EDTA + citric acid increased the phytoextraction of Cu in Cu-contaminated and co-contaminated soils, respectively. In pyrene-contaminated soil, all tested chelates increased the dissipation of pyrene reaching 90.4 % for citric acid, while in co-contaminated soil, only citric acid or EDTA + citric acid enhanced pyrene dissipation. These results show that Z. mays can be effective with the help of chelates in phytoextraction of Cu and dissipation of pyrene in co-contaminated soil.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available