4.6 Article

Physiological and Cytological Responses of Deschampsia cespitosa and Populus tremuloides to Soil Metal Contamination

Journal

WATER AIR AND SOIL POLLUTION
Volume 226, Issue 4, Pages -

Publisher

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/s11270-015-2382-x

Keywords

Deschampsia cespitosa; Populus tremuloides; Metal accumulation; Mitotic abnormalities; Northern Ontario (Canada)

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Vale (Sudbury)
  3. Glencore (Sudbury)
  4. NSERC

Ask authors/readers for more resources

Soil metal contamination represents serious threats to plant ecosystem sustainability. Knowledge of metal distribution in plants and the effects of long-term exposure to high levels of metals on cytological stability in Deschampsia cespitosa and Populus tremuloides population is limited. The objective of the present study was to determine how D. cespitosa and P. tremuloides plants cope with soil metal contamination. The effects of high copper (Cu) and nickel (Ni) soil concentrations on cytological stability were also analyzed. The results provide strong evidence that D. cespitosa plants cope with metal contaminations by accumulating them in their root system with limited translocation to their aerial plant parts. Metal bioaccumulation factors were high with values of 5.53 (Cu), 35.19 (Fe), 151.21 (Mg), 24.38 (Ni), and 27.42 (Zn). On the other hand, the bioaccumulation factors in P. tremuloides were 0.42 (Cu), 1.67 (Fe), 4.77 (Mg), 0.94 (Ni), and 5.53 (Zn). The translocation factors (TFs) from roots to leaves for poplar (P. tremuloides) were high for Ni (8.38) and low for Cu (0.71). Cytological analysis clearly showed that long exposure of roots to high levels of metal contamination lead to significant mitotic disruption. Overall, 100 % of the plants from metal-contaminated sites showed a high level of mixoploidy compared to 17 % from the reference sites. Lagging chromosomes in mitotic anaphase were observed in most of the plants from metal-contaminated sites. These mitotic abnormalities appear to have no detectable effects on plant growth and survival.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available