4.7 Article

Dispersion due to wall interactions in microfluidic separation systems

Journal

PHYSICS OF FLUIDS
Volume 20, Issue 1, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2828098

Keywords

-

Ask authors/readers for more resources

The transport of a solute in a straight microchannel of axially variable cross-sectional shape in the presence of an inhomogeneous flow field and an adsorption-desorption process on the wall is studied, motivated by applications to capillary electrophoresis and open-channel capillary electrochromatography. An asymptotic approach based on the long time limit is adopted that reduces the problem to the solution of a one-dimensional transport equation. The reduced model is integrated numerically to study the effects of inhomogeneous electro-osmotic flow and adsorption-desorption kinetics on solute migration and dispersion in a rectangular microchannel. The accuracy of the asymptotic equations is checked by the direct numerical solution of the original three-dimensional transport problem. (C) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available