4.7 Article

Quarkonium production in the LHC era: A polarized perspective

Journal

PHYSICS LETTERS B
Volume 736, Issue -, Pages 98-109

Publisher

ELSEVIER
DOI: 10.1016/j.physletb.2014.07.006

Keywords

Quarkonium; Polarization; NRQCD; QCD; Hadron formation

Funding

  1. FCT, Portugal [CERN/FP/123596/2011, CERN/FP/123601/2011, SFRH/BPD/98595/2013]
  2. FWF, Austria [P24167-N16]
  3. Austrian Science Fund (FWF) [P 24167] Funding Source: researchfish
  4. Fundação para a Ciência e a Tecnologia [CERN/FP/123596/2011, CERN/FP/123601/2011] Funding Source: FCT
  5. Austrian Science Fund (FWF) [P24167] Funding Source: Austrian Science Fund (FWF)

Ask authors/readers for more resources

Polarization measurements are usually considered as the most difficult challenge for the QCD description of quarkonium production. In fact, global data fits for the determination of the non-perturbative parameters of bound-state formation traditionally exclude polarization observables and use them as a posteriori verifications of the predictions, with perplexing results. With a change of perspective, we move polarization data to the centre of the study, advocating that they actually provide the strongest fundamental indications about the production mechanisms, even before we explicitly consider perturbative calculations. Considering psi(2S) and Upsilon(3S) measurements from LHC experiments and state-of-the-art next-to-leading order cross sections for the short-distance production of heavy quark-antiquark pairs of relevant colour and angular momentum configurations, we perform a search for a kinematic domain where quarkonium polarizations can be correctly reproduced together with the respective cross sections, by systematically scanning the phase space and accurately treating the experimental uncertainties. This strategy provides a straightforward solution to the quarkonium polarization puzzle and reassuring signs that the factorization of short-and long-distance effects works, at least in the high-transverse-momentum region, least affected by limitations in the current fixed-order calculations. The results expose unexpected hierarchies in the phenomenological long-distance parameters that open new paths towards the understanding of bound-state formation in QCD. (C) 2014 The Authors. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available