4.7 Article

Dark matter disc enhanced neutrino fluxes from the Sun and Earth

Journal

PHYSICS LETTERS B
Volume 674, Issue 4-5, Pages 250-256

Publisher

ELSEVIER
DOI: 10.1016/j.physletb.2009.03.042

Keywords

Dark matter; Cosmology; Galaxy formation; High energy astrophysics

Funding

  1. Swiss NSF
  2. UZH
  3. Gordon and Betty Moore Foundation

Ask authors/readers for more resources

As disc galaxies form in a hierarchical cosmology, massive merging satellites are preferentially dragged towards the disc plane. The material accreted from these satellites forms a dark matter disc that contributes 0.25-1.5 times the non-rotating halo density at the solar position. Here, we show the importance of the dark disc for indirect dark matter detection in neutrino telescopes. Previous predictions of the neutrino flux from WIMP annihilation in the Earth and the Sun have assumed that Galactic dark matter is spherically distributed with a Gaussian velocity distribution, the standard halo model. Although the dark disc has a local density comparable to the dark halo, its higher phase space density at low velocities greatly enhances capture rates in the Sun and Earth. For typical dark disc properties, the resulting muon flux from the Earth is increased by three orders of magnitude over the SHM, while for the Sun the increase is an order of magnitude. This significantly increases the sensitivity of neutrino telescopes to fix or constrain parameters in WIMP models. The flux from the Earth is extremely sensitive to the detailed properties of the dark disc, while the flux from the Sun is more robust. The enhancement of the muon flux from the dark disc puts the search for WIMP annihilation in the Earth on the same level as the Sun for WIMP masses less than or similar to 100 GeV. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available