3.9 Article

Coupling power into accelerating mode of a three-dimensional silicon woodpile photonic band-gap waveguide

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevSTAB.17.081301

Keywords

-

Funding

  1. U.S. Department of Energy [DE-AC02-76SF00515, DE-FG06-97ER41276]
  2. DARPA [N66001-11-1-4199]

Ask authors/readers for more resources

Silicon woodpile photonic crystals provide a base structure with which to build a three-dimensional dielectric waveguide system for high-gradient laser-driven acceleration. To realize an on-chip woodpile laser accelerator, a key component is the power coupler to deliver laser power to the fundamental accelerating mode. The woodpile waveguide is periodically loaded in the longitudinal direction; therefore simple cross-sectional mode profile matching is not sufficient to launch the accelerating mode appropriately and will result in significant scattering loss. Several traveling-wave coupler design schemes developed for multicell radio frequency cavity accelerators can be adapted to the woodpile accelerator coupler design. This paper presents design procedures and results using these methods. We present simulations indicating near 100% power transmission between the transverse electric mode of a silicon-guide side coupler and the transverse-magnetic-like accelerating mode of a woodpile waveguide. The coupler launches a full traveling-wave propagation of the accelerating mode, which maintains its propagation quality over long waveguide structures, and provides better tolerance on the structure fabrication uncertainty and material breakdown than standing-wave coupling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available