3.9 Article

High-gradient two-beam accelerator structure

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevSTAB.13.071303

Keywords

-

Funding

  1. Office of High Energy Physics, U.S. Department of Energy

Ask authors/readers for more resources

A novel cavity structure is described that could be the basis for a two-beam, high-gradient, accelerator. Versions of the structure could be used for acceleration of beams of electrons, positrons, muons, protons, or heavier ions; with either electron or proton drive beams. The structure embodies cavities that are excited in several harmonically related eigenmodes, such that rf fields reach their peak values only during small portions of each basic rf period. This feature could help raise breakdown and pulse heating thresholds. The two-beam accelerator structure comprises chains of these cavities. In this configuration, no transfer elements are needed to couple rf energy from the drive beam to the accelerated beam, since both beams traverse the same cavities. Purposeful cavity detuning is used to provide much smaller deceleration for a high-current drive beam, than acceleration for a low-current accelerated beam, i.e., to provide a high transformer ratio. A self-consistent theory is presented to calculate idealized acceleration gradient, transformer ratio, and efficiency for energy transfer from the drive beam to the accelerated beam, for either parallel or antiparallel motion of the beams. The theory has been cast in dimensionless quantities so as to facilitate optimization with respect to efficiency, acceleration gradient, or transformer ratio, and to illuminate the interdependence of these parameters. Means for dramatically shortening the structure fill time are also described. However, no beam dynamics analysis is presented, so the range of parameters within which this new acceleration concept can be used will remain uncertain until it is established that stable beam transport along the structure using an appropriate focusing system is possible.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available