4.8 Article

Enhanced Charging Kinetics of Porous Electrodes: Surface Conduction as a Short-Circuit Mechanism

Journal

PHYSICAL REVIEW LETTERS
Volume 113, Issue 9, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.113.097701

Keywords

-

Funding

  1. W. M. Keck Foundation
  2. ONR [N00014-11-1-0027]
  3. Institute for Collaborative Biotechnologies through U.S. Army Research Office [W911NF-09-0001]

Ask authors/readers for more resources

We use direct numerical simulations of the Poisson-Nernst-Planck equations to study the charging kinetics of porous electrodes and to evaluate the predictive capabilities of effective circuit models, both linear and nonlinear. The classic transmission line theory of de Levie holds for general electrode morphologies, but only at low applied potentials. Charging dynamics are slowed appreciably at high potentials, yet not as significantly as predicted by the nonlinear transmission line model of Biesheuvel and Bazant. We identify surface conduction as a mechanism which can effectively short circuit the high-resistance electrolyte in the bulk of the pores, thus accelerating the charging dynamics and boosting power densities. Notably, the boost in power density holds only for electrode morphologies with continuous conducting surfaces in the charging direction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available