4.8 Article

Structural Relaxation is a Scale-Free Process

Journal

PHYSICAL REVIEW LETTERS
Volume 113, Issue 24, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.113.245702

Keywords

-

Ask authors/readers for more resources

We show that in deeply supercooled liquids, structural relaxation proceeds via the accumulation of Eshelby events, i.e. local rearrangements that create long-ranged and anisotropic stresses in the surrounding medium. Such events must be characterized using tensorial observables and we construct an analytical framework to probe their correlations using local stress data. By analyzing numerical simulations, we then demonstrate that events are power-law correlated in space, with a time-dependent amplitude which peaks at the alpha relaxation time tau(alpha). This effect, which becomes stronger near the glass transition, results from the increasingly important role of local stress fluctuations in facilitating relaxation events. Our finding precludes the existence of any length scale beyond which the relaxation process decorrelates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available