4.8 Article

Channel-Facilitated Diffusion Boosted by Particle Binding at the Channel Entrance

Journal

PHYSICAL REVIEW LETTERS
Volume 113, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.113.048102

Keywords

-

Funding

  1. Leverhulme and Newton Trust
  2. German Academic Exchange Service (DAAD)
  3. German National Academic Foundation
  4. ERC

Ask authors/readers for more resources

We investigate single-file diffusion of Brownian particles in arrays of closely confining microchannels permeated by a variety of attractive optical potentials and connecting two baths with equal particle concentration. We simultaneously test free diffusion in the channel, diffusion in optical traps coupled in the center of the channel, and diffusion in traps extending into the baths. We found that both classes of attractive optical potentials enhance the translocation rate through the channel with respect to free diffusion. Surprisingly, for the latter class of potentials we measure a 40-fold enhancement in the translocation rate with respect to free diffusion and find a sublinear power law dependence of the translocation rate on the average number of particles in the channel. Our results reveal the function of particle binding at the channel entrances for diffusive transport and open the way to a better understanding of membrane transport and design of synthetic membranes with enhanced diffusion rate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available