4.8 Article

Absence of a Proximity Effect for a Thin-Films of a Bi2Se3 Topological Insulator Grown on Top of a Bi2Sr2CaCu2O8+δ Cuprate Superconductor

Journal

PHYSICAL REVIEW LETTERS
Volume 113, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.113.067003

Keywords

-

Funding

  1. US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]
  2. ARO MURI program [W911NF-12-1-0461]

Ask authors/readers for more resources

Proximity-induced superconductivity in a 3D topological insulator represents a new avenue for observing zero-energy Majorana fermions inside vortex cores. Relatively small gaps and low transition temperatures of conventional s-wave superconductors put hard constraints on these experiments. Significantly larger gaps and higher transition temperatures in cuprate superconductors might be an attractive alternative to considerably relax these constraints, but it is not clear whether the proximity effect would be effective in heterostructures involving cuprates and topological insulators. Here, we present angle-resolved photoemission studies of thin Bi2Se3 films grown in situ on optimally doped Bi2Sr2CaCu2O8+delta substrates that show the absence of proximity-induced gaps on the surfaces of Bi2Se3 films as thin as a 1.5 quintuple layer. These results suggest that the superconducting proximity effect between a cuprate superconductor and a topological insulator is strongly suppressed, likely due to a very short coherence length along the c axis, incompatible crystal and pairing symmetries at the interface, small size of the topological surface state's Fermi surface, and adverse effects of a strong spin-orbit coupling in the topological material.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available