4.8 Article

Origin of the Bismuth-Induced Decohesion of Nickel and Copper Grain Boundaries

Journal

PHYSICAL REVIEW LETTERS
Volume 111, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.111.055502

Keywords

-

Funding

  1. U.S. Department of Energy's EERE CSP Program [DE-AC36-08GO28308]

Ask authors/readers for more resources

Ductile metals such as Ni and Cu can become brittle when certain impurities (e.g., Bi) diffuse and segregate into their grain boundaries (GBs). Using first-principles calculations, we investigate the microscopic origin of the Bi-induced loss of cohesion of Ni and Cu GBs. We find that the Bi bilayer interfacial phase is the most stable impurity phase under the Bi-rich condition, while the Bi monolayer phase is a metastable phase regardless of the value of the Bi chemical potential. Our finding is consistent with the recent experimental observation for Ni GBs [Luo et al. Science 333, 1730 (2011)]. The electric polarization effect of the Bi bilayer substantially enhances the strength of the Bi-metal interfacial bonds, stabilizing the bilayer phase over other phases. The Bi-Bi interlayer bonding is significantly weakened in the GBs, leading to a factor of 20 to 50 decrease in the GB cohesion, which has strong implications for the understanding of Bi-induced intergranular fracture of Ni and Cu polycrystals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available