4.8 Article

Self-Assembly of Colloidal Superstructures in Coherently Fluctuating Fields

Journal

PHYSICAL REVIEW LETTERS
Volume 111, Issue 19, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.111.198301

Keywords

-

Ask authors/readers for more resources

From microscopic fluid clusters to macroscopic droplets, the structure of fluids is governed by the van der Waals force, a force that acts between polarizable objects. In this Letter, we derive a general theory that describes the nonequilibrium counterpart to the van der Waals force, which emerges in spatially coherently fluctuating electromagnetic fields. We describe the formation of a novel and complex hierarchy of self-organized morphologies in magnetic and dielectric colloid systems. Most striking among these morphologies are dipolar foams-colloidal superstructures that swell against gravity and display a high sensitivity to the applied field. We discuss the dominance of many-body forces and derive the equation of state for a material formed by the coherent van der Waals force. Our theory is applied to recent experiments in paramagnetic colloidal systems and a new experiment is suggested to test the theory.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available