4.8 Article

Nonlinear Plasmon-Photon Interaction Resolved by k-Space Spectroscopy

Journal

PHYSICAL REVIEW LETTERS
Volume 108, Issue 13, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.108.136802

Keywords

-

Ask authors/readers for more resources

Metallic nanostructures support extreme localization and enhancement of optical fields via surface-plasmon (SP) resonances. Although SP are associated with giant enhancements of nonlinear phenomena such as second-harmonic generation (SHG), the role of SP in the process, whether as a field-enhancing catalyst or as a quasiparticle converted in the interaction, has remained experimentally elusive. We demonstrate how k-space spectroscopy can distinguish between the plasmonic and photonic SHG processes that occur in a metal nanofilm when it is optically driven via the Kretschmann geometry. The results revealed a nonlinear interaction where two SP annihilate to create a second-harmonic photon. This knowledge has implications for realizing the inverse process, plasmonic parametric down-conversion, which could act as a coherent source of entangled SP pairs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available