4.8 Article

Fermi Surface Reconstruction by Dynamic Magnetic Fluctuations

Journal

PHYSICAL REVIEW LETTERS
Volume 109, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.109.037001

Keywords

-

Funding

  1. National Computational Infrastructure at the ANU [u66]

Ask authors/readers for more resources

We demonstrate that nearly critical quantum magnetic fluctuations in strongly correlated electron systems can change the Fermi surface topology and also lead to spin charge separation in two dimensions. To demonstrate these effects, we consider a small number of holes injected into the bilayer antiferromagnet. The system has a quantum critical point (QCP) which separates magnetically ordered and disordered phases. We demonstrate that in the physically interesting regime, there is a magnetically driven Lifshitz point (LP) inside the magnetically disordered phase. At the LP, the topology of the hole Fermi surface is changed. We also demonstrate that in this regime, the hole spin and charge necessarily separate when approaching the QCP. The considered model sheds light on generic problems concerning the physics of the cuprates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available