4.8 Article

Quasiparticle Spectra from a Nonempirical Optimally Tuned Range-Separated Hybrid Density Functional

Journal

PHYSICAL REVIEW LETTERS
Volume 109, Issue 22, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.109.226405

Keywords

-

Funding

  1. European Research Council
  2. Israel Science Foundation
  3. United States-Israel Binational Science Foundation
  4. National Science Foundation
  5. Molecular Foundry
  6. Network for Computational Nanotechnology
  7. U.S. Department of Energy [DE-FG02-09ER16066]
  8. EMSL
  9. U.S. Department of Energy's Office of Biological and Environmental Research

Ask authors/readers for more resources

We present a method for obtaining outer-valence quasiparticle excitation energies from a density-functional-theory-based calculation, with an accuracy that is comparable to that of many-body perturbation theory within the GW approximation. The approach uses a range-separated hybrid density functional, with an asymptotically exact and short-range fractional Fock exchange. The functional contains two parameters, the range separation and the short-range Fock fraction. Both are determined nonempirically, per system, on the basis of the satisfaction of exact physical constraints for the ionization potential and frontier-orbital many-electron self-interaction, respectively. The accuracy of the method is demonstrated on four important benchmark organic molecules: perylene, pentacene, 3,4,9,10-perylene-tetracarboxylic-dianydride (PTCDA), and 1,4,5,8-naphthalene-tetracarboxylic-dianhydride (NTCDA). We envision that for the outer-valence excitation spectra of finite systems the approach could provide an inexpensive alternative to GW, opening the door to the study of presently out of reach large-scale systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available