4.8 Article

Nonequilibrium Route to Nanodiamond with Astrophysical Implications

Journal

PHYSICAL REVIEW LETTERS
Volume 108, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.108.075503

Keywords

-

Funding

  1. Australian Research Council

Ask authors/readers for more resources

Nanometer-sized diamond grains are commonly found in primitive chondritic meteorites, but their origin is puzzling. Using evidence from atomistic simulation, we establish a mechanism by which nanodiamonds form abundantly in space in a two-stage process involving condensation of vapor to form carbon onions followed by transformation to nanodiamond in an energetic impact. This nonequilibrium process is consistent with common environments in space and invokes the fewest assumptions of any proposed model. Accordingly, our model can explain nanodiamond formation in both presolar and solar environments. The model provides an attractive framework for understanding noble gas incorporation and explains all key features of meteoritic nanodiamond, including size, shape, and polytype. By understanding the creation of nanodiamonds, new opportunities arise for their exploitation as a powerful astrophysical probe.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available