4.8 Article

Exact Nonequilibrium Steady State of a Strongly Driven Open XXZ Chain

Journal

PHYSICAL REVIEW LETTERS
Volume 107, Issue 13, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.107.137201

Keywords

-

Funding

  1. ARRS (Slovenia) [J1-2208, P1-0044]

Ask authors/readers for more resources

An exact and explicit ladder-tensor-network ansatz is presented for the nonequilibrium steady state of an anisotropic Heisenberg XXZ spin-1/2 chain which is driven far from equilibrium with a pair of Lindblad operators acting on the edges of the chain only. We show that the steady-state density operator of a finite system of size n is-apart from a normalization constant-a polynomial of degree 2n - 2 in the coupling constant. Efficient computation of physical observables is facilitated in terms of a transfer operator reminiscent of a classical Markov process. In the isotropic case we find cosine spin profiles, 1/n(2) scaling of the spin current, and long-range correlations in the steady state. This is a fully nonperturbative extension of a recent result [Phys. Rev. Lett. 106, 217206 (2011)].

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available