4.8 Article

3 Long-Range Strain Correlations in Sheared Colloidal Glasses

Journal

PHYSICAL REVIEW LETTERS
Volume 107, Issue 19, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.107.198303

Keywords

-

Funding

  1. Netherlands Organization for Scientific Research (NWO)

Ask authors/readers for more resources

Glasses behave as solids on experimental time scales due to their slow relaxation. Growing dynamic length scales due to cooperative motion of particles are believed to be central to this slow response. For quiescent glasses, however, the size of the cooperatively rearranging regions has never been observed to exceed a few particle diameters, and the observation of long-range correlations has remained elusive. Here, we provide direct experimental evidence of long-range correlations during the deformation of a dense colloidal glass. By imposing an external stress, we force structural rearrangements, and we identify long-range correlations in the fluctuations of microscopic strain and elucidate their scaling and spatial symmetry. The applied shear induces a transition from homogeneous to inhomogeneous flow at a critical shear rate, and we investigate the role of strain correlations in this transition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available