4.8 Article

Quantum Electron Self-Interaction in a Strong Laser Field

Journal

PHYSICAL REVIEW LETTERS
Volume 107, Issue 26, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.107.260401

Keywords

-

Ask authors/readers for more resources

The quantum state of an electron in a strong laser field is altered if the interaction of the electron with its own electromagnetic field is taken into account. Starting from the Schwinger-Dirac equation, we determine the states of an electron in a plane-wave field with inclusion, at leading order, of its electromagnetic self-interaction. On the one hand, the electron states show a pure quantum contribution to the electron quasimomentum, conceptually different from the conventional classical one arising from the quiver motion of the electron. On the other hand, the electron self-interaction induces a distinct dynamics of the electron spin, whose effects are shown to be measurable in principle with available technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available