4.8 Article

Analysis of a Fully Packed Loop Model Arising in a Magnetic Coulomb Phase

Journal

PHYSICAL REVIEW LETTERS
Volume 107, Issue 17, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.107.177202

Keywords

-

Ask authors/readers for more resources

The Coulomb phase of spin ice, and indeed the I(c) phase of water ice, naturally realize a fully packed two-color loop model in 3D. We present a detailed analysis of the statistics of these loops: we find loops spanning the system multiple times hosting a finite fraction of all sites while the average loop length remains finite. We contrast the behavior with an analogous 2D model. We connect this body of results to properties of polymers, percolation and insights from Schramm-Loewner evolution processes. We also study another extended degree of freedom, called worms, which appear as Dirac strings'' in spin ice. We discuss implications of these results for the efficiency of numerical cluster algorithms, and address implications for the ordering properties of a broader class of magnetic systems, e.g., with Heisenberg spins, such as CsNiCrF(6) or ZnCr(2)O(4).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available