4.8 Article

van der Waals Interactions in Ionic and Semiconductor Solids

Journal

PHYSICAL REVIEW LETTERS
Volume 107, Issue 24, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.107.245501

Keywords

-

Funding

  1. European Research Council (ERC)

Ask authors/readers for more resources

van der Waals (vdW) energy corrected density-functional theory [Phys. Rev. Lett. 102, 073005 (2009)] is applied to study the cohesive properties of ionic and semiconductor solids (C, Si, Ge, GaAs, NaCl, and MgO). The required polarizability and dispersion coefficients are calculated using the dielectric function obtained from time-dependent density-functional theory. Coefficients for atoms in the solid'' are then calculated from the Hirshfeld partitioning of the electron density. It is shown that the Clausius-Mossotti equation that relates the polarizability and the dielectric function is accurate even for covalently-bonded semiconductors. We find an overall improvement in the cohesive properties of Si, Ge, GaAs, NaCl, and MgO, when vdW interactions are included on top of the Perdew-Burke-Ernzerhof or Heyd-Scuseria-Ernzerhof functionals. The relevance of our findings for other solids is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available