4.8 Article

Metal-Insulator Transition and Orbital Order in PbRuO3

Journal

PHYSICAL REVIEW LETTERS
Volume 102, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.102.046409

Keywords

-

Funding

  1. EPSRC
  2. DFG [SFB 608]
  3. Engineering and Physical Sciences Research Council [EP/C528506/1] Funding Source: researchfish
  4. EPSRC [EP/C528506/1] Funding Source: UKRI

Ask authors/readers for more resources

Anomalous low temperature electronic and structural behavior has been discovered in PbRuO3. The structure [space group Pnma, a=5.563 14(1), b=7.864 68(1), c=5.614 30(1) A] and metallic conductivity at 290 K are similar to those of SrRuO3 and other ruthenate perovskites, but a sharp metal-insulator transition at which the resistivity increases by 4 orders of magnitude is discovered at 90 K. This is accompanied by a first-order structural transition to an Imma phase [a=5.569 62(1), b=7.745 50(1), c=5.662 08(1) A at 25 K] that shows a coupling of Ru4+ 4d orbital order to distortions from Pb2+ 6s6p orbital hybridization. The Pnma to Imma transition is an unconventional reversal of the group-subgroup symmetry relationship. No long range magnetic order is evident down to 1.5 K. Calculations show that Pb 6s6p and Ru 4d orbital hybridization and strong spin-orbit coupling are significant.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available