4.8 Article

Universal Spreading of Wave Packets in Disordered Nonlinear Systems

Journal

PHYSICAL REVIEW LETTERS
Volume 102, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.102.024101

Keywords

-

Ask authors/readers for more resources

In the absence of nonlinearity all eigenmodes of a chain with disorder are spatially localized (Anderson localization). The width of the eigenvalue spectrum and the average eigenvalue spacing inside the localization volume set two frequency scales. An initially localized wave packet spreads in the presence of nonlinearity. Nonlinearity introduces frequency shifts, which define three different evolution outcomes: (i) localization as a transient, with subsequent subdiffusion; (ii) the absence of the transient and immediate subdiffusion; (iii) self-trapping of a part of the packet and subdiffusion of the remainder. The subdiffusive spreading is due to a finite number of packet modes being resonant. This number does not change on average and depends only on the disorder strength. Spreading is due to corresponding weak chaos inside the packet, which slowly heats the cold exterior. The second moment of the packet grows as t(alpha). We find alpha = 1/3.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available