4.8 Article

Designing Spinning Bloch States in 2D Photonic Crystals for Stirring Nanoparticles

Journal

PHYSICAL REVIEW LETTERS
Volume 103, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.103.033903

Keywords

-

Ask authors/readers for more resources

Based on an optical analogy of spintronics, the generation of spinning Bloch states is theoretically investigated in two-dimensional photonic crystals without space-inversion symmetry. We address its close relation to the Berry curvature in crystal momentum space, which represents the nontrivial geometric property of a Bloch state. It is shown that the Berry curvature is easily controlled by tuning two types of dielectric rods in a honeycomb photonic crystal. Bloch states with large Berry curvatures appear as optical tornadoes in real space. The radiation force of such a configuration is analyzed, and its possible application for selective optical stirrer is discussed as a complementary proposal in optical tweezers technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available