4.8 Article

Surface-Stabilized Nonferromagnetic Ordering of a Layered Ferromagnetic Manganite

Journal

PHYSICAL REVIEW LETTERS
Volume 103, Issue 22, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.103.227201

Keywords

-

Funding

  1. Distinguished Scientist Program at UTK-ORNL
  2. NSF
  3. DOE (DMSE) [NSF-DMR-0451163]
  4. U. S. Department of Energy, Office of Science [DE-AC02-06CH11357]
  5. U. S. DOE [DE-FG02-88ER45372]

Ask authors/readers for more resources

An outstanding question regarding the probing or possible device applications of correlated electronic materials (CEMs) with layered structure is the extent to which their bulk and surface properties differ or not. The broken translational symmetry at the surface can lead to distinct functionality due to the charge, lattice, orbital, and spin coupling. Here we report on the case of bilayered manganites with hole doping levels corresponding to bulk ferromagnetic order. We find that, although the hole doping level is measured to be the same as in the bulk, the surface layer is not ferromagnetic. Further, our low-energy electron diffraction and x-ray measurements show that there is a c-axis collapse in the outermost layer. Bulk theoretical calculations reveal that, even at fixed doping level, the relaxation of the Jahn-Teller distortion at the surface is consistent with the stabilization of an A-type antiferromagnetic state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available