4.8 Article

Direct Measurements of Hydrophobic Slippage Using Double-Focus Fluorescence Cross-Correlation

Journal

PHYSICAL REVIEW LETTERS
Volume 102, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.102.118302

Keywords

-

Ask authors/readers for more resources

We report the results of direct measurements of velocity profiles in a microchannel with hydrophobic and hydrophilic walls, using a new high-precision method of double-focus spatial fluorescence cross correlation under a confocal microscope. In the vicinity of both walls the measured velocity profiles do not go to zero by supplying a plateau of constant velocity. This apparent slip is proven to be due to a Taylor dispersion, an augmentation by shear diffusion of nanotracers in the direction of flow. Comparing the velocity profiles near the hydrophobic and hydrophilic walls for various conditions shows that there is a true slip length due to hydrophobicity. This length, of the order of several tens of nanometers, is independent of the electrolyte concentration and shear rate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available