4.8 Article

Simultaneous cooling of an artificial atom and its neighboring quantum system

Journal

PHYSICAL REVIEW LETTERS
Volume 100, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.100.047001

Keywords

-

Ask authors/readers for more resources

We propose an approach for cooling both an artificial atom (e.g., a flux qubit) and its neighboring quantum system, the latter modeled by either a quantum two-level system or a quantum resonator. The flux qubit is cooled by manipulating its states, following an inverse process of state population inversion, and then the qubit is switched on to resonantly interact with the neighboring quantum system. By repeating these steps, the two subsystems can be simultaneously cooled. Our results show that this cooling is robust and effective, irrespective of the chosen quantum systems connected to the qubit.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available