4.8 Article

Robust quantum error correction via convex optimization

Journal

PHYSICAL REVIEW LETTERS
Volume 100, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.100.020502

Keywords

-

Ask authors/readers for more resources

We present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity. We illustrate our theory numerically for optimized 5-qubit codes, using the standard [5,1,3] code as a benchmark. Our optimized encoding and recovery yields fidelities that are uniformly higher by 1-2 orders of magnitude against random unitary weight-2 errors compared to the [5,1,3] code with standard recovery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available